SAMUEL C. HOOVER, PH.D.

Summary

I am a research scientist, PPG Fellow, and Chemical Engineering Ph.D. with 6 years of experience building data-driven models to answer complex, scientific problems. Proven track record of success through peer-reviewed publications 2, interdisciplinary internships, and open-source projects 2. Adept at wearing many hats, working in fast-paced cross-functional teams, and effectively communicating difficult subjects. Enthusiastic about applying my experience to deliver results in data science roles.

Education

University of Massachusetts Amherst Amherst, MA

Ph.D. in Chemical Engineering (awarded PPG Fellowship and Teaching Assistant Award) Dissertation: "Study of Charged Macromolecule Phase Behavior using Conventional and Modern Modeling Methods" Relevant coursework: Machine Learning, Neural Networks, Mathematical Modeling, Statistical Mechanics, Adv. Mathematical Analysis

Clarkson University Potsdam, NY

B.S. in Chemical Engineering (with distinction); Minor in Mathematics

Sep 2018 - Dec 2024

Skills

- Languages & Tools: Python (PyTorch, scikit-learn), SQL (SQLite, Postgres), Rust, C/C++, Git, Docker
- **Methods:** machine learning, statistical modeling, high-performance computing, data science, NLP, regression, biophysics

Experience

Muthu Polymer Group 🗹 (Research Assistant; Data science & biophysics) Amherst, MA

- Created a dataset with 260k samples and 11 hand-engineered features from real-world data using pandas and improved data quality by identifying 5% of samples as unreliable
- Trained a machine learning model that accurately predicts ($R^2 > 0.95$) protein behavior 90x quicker than traditional methods
- Developed theory 🗹 that allows scientists to design cargo-releasing materials with specific properties
- Rewrote the group's free energy minimization code 🖾, increased productivity by reducing compute time and cost by 90%
- Integrated Transformers into genomic sequencing pipeline and benchmarked against other available third-party sequencing tools •
- Automated extracurricular duties 🖸 so I could focus on important tasks, required managing unstructured and structured data •
- Fostered a collaborative and open environment by mentoring junior lab members and giving multiple seminars each semester

Triton Systems, Inc. 2 (Technology & Signal Processing Intern) Chelmsford, MA

- Optimized design of electromagnetic components for a handheld viral detection 🖾 device in collaboration with engineers
- Developed an application for product testing, enabled users to make on-the-fly design changes and estimate performance
- Supported design best practices by reviewing current literature on data acquisition and signal processing for breath analysis
- Worked with key stakeholders, meeting monthly to present research updates and respond to questions from financial sponsors

Jan 2019 - Dec 2020 Bai Research Group 🖸 (Research Assistant; ML & computational chemistry) Amherst, MA

- Applied **convolutional neural networks** for 20,000x quicker materials property predictions 🖸 than traditional methods, enabling researchers to focus on promising candidates
- Built custom **PyTorch** framework [2] for processing large datasets (>1 GB/sample), training, model analysis, and experiment logging; ensured reproducibility and reliability for 8 person research team
- Created an automated pipeline 🖾 in MATLAB to process, analyze, and visualize over 100,000 3D materials
- Computed forcefield parameters and phase diagrams for small molecules using Gibbs ensemble Monte Carlo simulations

SI Group, Inc. 2 (Global Manufacturing Technology Intern) Schenectady, NY

- Strengthened institutional knowledge by identifying root causes of loss events and determining impact on revenue and production
- Standardized the block flow diagrams of 19 key company assets, reduced potential errors by improving consistency and clarity
- Aided PI Asset Framework implementation for real-time process monitoring, enabled quick decisions and eliminated guesswork

Publications

- Hoover, S., et al. Learning the sequence effects on the microphase separation transition of charged heteropolymers. In preparation.
- Hoover, S., et al. Theory and quantitative assessment of pH-responsive polyzwitterion-polyelectrolyte complexation. Soft Matter [2].
- Liu, Y., et al. ZeoNet: 3D convolutional neural networks for predicting adsorption in nanoporous zeolites. J. Mater. Chem. A 🖸.

Aug 2014 - May 2018

Jan 2021 - Dec 2024

Jun 2023 - Sep 2023

May 2017 - Aug 2017